Common acoustical pole and zero modeling of room transfer functions

نویسندگان

  • Youichi Haneda
  • Shoji Makino
  • Yutaka Kaneda
چکیده

Abstruct-A new model for a room transfer function (RTF) by using common acoustical poles that correspond to resonance properties of a room is proposed. These poles are estimated as the common values of many RTF’s corresponding to different source and receiver positions. Since there is one-to-one correspondence between poles and AR coefficients, these poles are calculated as common AR coefficients by two methods: i) using the least squares method, assuming all the given multiple RTF’s have the same AR coefficients and ii) averaging each set of AR coefficients estimated from each RTF. The estimated poles agree well with the theoretical poles when estimated with the same order as the theoretical pole order. When estimated with a lower order than the theoretical pole order, the estimated poles correspond to the major resonance frequencies, which have high Q factors. Using the estimated common AR coefficients, the proposed method models the RTF’s with different MA coefficients. This model is called the common-acoustical-pole and zero (CAPZ) model, and it requires far fewer variable parameters to represent RTF’s than the conventional all-zero or polehero model. This model was used for an acoustic echo canceller at low frequencies, as one example. The acoustic echo canceller based on the proposed model requires half the variable parameters and converges 1.5 times faster than one based on the all-zero model, confirming the efficiency of the proposed model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Common-acoustical-pole and zero modeling of head-related transfer functions

Use of a common-acoustical-pole and zero model is proposed for modeling head-related transfer functions (HRTF’s) for various directions of sound incidence. The HRTF’s are expressed using the common acoustical poles, which do not depend on the source directions, and the zeros, which do. The common acoustical poles are estimated as they are common to HRTF’s for various source directions; the esti...

متن کامل

Interpolation and Extrapolation of Room Transfer Functions Based on Common Acoustical Poles and Their Residues

We propose a new method of modeling a room transfer function (RTF) that uses common acoustical poles and their residues. The common acoustical poles correspond to the resonance frequencies (eigenvalues) of the room, and their residues are composed of the eigenfunctions of the source and receiver positions in the room. Because the common acoustical poles do not depend on the source and receiver ...

متن کامل

Common-acoustical-pole and residue model and its application to spatial interpolation and extrapolation of a room transfer function

A method is proposed for modeling a room transfer function (RTF) by using common acoustical poles and their residues. The common acoustical poles correspond to the resonance frequencies (eigenfrequencies) of the room, so they are independent of the source and receiver positions. The residues correspond to the eigenfunctions of the room. Therefore, the residue, which is a function of the source ...

متن کامل

Multiple-point equalization of room transfer functions by using common acoustical poles

A multiple-point equalization filter using the common acoustical poles of room transfer functions is proposed. The common acoustical poles correspond to the resonance frequencies, which are independent of source and receiver positions. They are estimated as common autoregressive (AR) coefficients from multiple room transfer functions. The equalization is achieved with a finite impulse response ...

متن کامل

Common Acoustical Pole Estimation from Multi-Channel Musical Audio Signals

This paper describes a method for estimating the amplitude characteristics of poles common to multiple room transfer functions from musical audio signals received by multiple microphones. Knowledge of these pole characteristics would make it easier to manipulate audio equalizers, since they correspond to the room resonance. It has been proven that an estimate of the poles can be calculated prec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Speech and Audio Processing

دوره 2  شماره 

صفحات  -

تاریخ انتشار 1994